资源类型

期刊论文 196

会议视频 1

年份

2023 19

2022 26

2021 14

2020 10

2019 18

2018 9

2017 12

2016 8

2015 9

2014 11

2013 2

2012 9

2011 11

2010 5

2009 7

2008 7

2007 8

2006 6

2005 2

2004 1

展开 ︾

关键词

增材制造 2

拓扑优化 2

BP神经网络 1

CAD/CAE一体化 1

COVID-19 1

CPLEX 1

Cuk矩阵变换器 1

DPP);分布式功率转换器;开关电容转换器 1

ISO 18186 1

MPPT);差分功率处理(Differential power processing 1

MS-CETSA 1

NARMA模型 1

不确定性 1

不良地质 1

专利分析 1

业务架构集成;业务组件;组件识别;CRUD矩阵;启发式 1

主动噪声控制(ANC);过滤扩展最小均方(FXLMS);模拟计算;遗传算法;内点法 1

交通导致振动 1

产品生命周期的协同设计 1

展开 ︾

检索范围:

排序: 展示方式:

Data-driven distribution network topology identification considering correlated generation power of distributed

《能源前沿(英文)》 2022年 第16卷 第1期   页码 121-129 doi: 10.1007/s11708-021-0780-x

摘要: This paper proposes a data-driven topology identification method for distribution systems with distributed energy resources (DERs). First, a neural network is trained to depict the relationship between nodal power injections and voltage magnitude measurements, and then it is used to generate synthetic measurements under independent nodal power injections, thus eliminating the influence of correlated nodal power injections on topology identification. Second, a maximal information coefficient-based maximum spanning tree algorithm is developed to obtain the network topology by evaluating the dependence among the synthetic measurements. The proposed method is tested on different distribution networks and the simulation results are compared with those of other methods to validate the effectiveness of the proposed method.

关键词: power distribution network     data-driven     topology identification     distributed energy resource     maximal information coefficient    

An identification method for enclosed voids restriction in manufacturability design for additive manufacturing

Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG

《机械工程前沿(英文)》 2015年 第10卷 第2期   页码 126-137 doi: 10.1007/s11465-015-0340-3

摘要:

Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply-connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simply-connected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM.

关键词: additive manufacturing     topology optimization     manufacturability constraints     design for additive manufacturing     simply-connected constraint    

Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0683-5

摘要: Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode–dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method.

关键词: piezoelectric actuator     isogeometric topology optimization     uniform manufacturability     robust formulation     density distribution function    

Massively efficient filter for topology optimization based on the splitting of tensor product structure

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0710-6

摘要: In this work, we put forward a massively efficient filter for topology optimization (TO) utilizing the splitting of tensor product structure. With the aid of splitting technique, the traditional weight matrices of B-splines and non-uniform rational B-spline implicit filters are decomposed equivalently into two or three submatrices, by which the sensitivity analysis is reformulated for the nodal design variables without altering the optimization process. Afterwards, an explicit sensitivity filter, which is decomposed by the splitting pipeline as that applied to implicit filter, is established in terms of the tensor product of the axial distances between adjacent element centroids, and the corresponding sensitivity analysis is derived for elemental design variables. According to the numerical results, the average updating time for the design variables is accelerated by two-order-of-magnitude for the decomposed filter compared with the traditional filter. In addition, the memory burden and computing time of the weight matrix are decreased by six- and three-order-of-magnitude for the decomposed filter. Therefore, the proposed filter is massively improved by the splitting of tensor product structure and delivers a much more efficient way of solving TO problems in the frameworks of isogeometric analysis and finite element analysis.

关键词: topology optimization     isogeometric analysis     finite element analysis     tensor product structure     sensitivity analysis    

Solving topology optimization problems by the Guide-Weight method

Xinjun LIU, Zhidong LI, Liping WANG, Jinsong WANG

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 136-150 doi: 10.1007/s11465-010-0126-6

摘要:

Finding a good solution method for topology optimization problems is always paid attention to by the research field because they are subject to the large number of the design variables and to the complexity that occurs because the objective and constraint functions are usually implicit with respect to design variables. Guide-Weight method, proposed first by Chen in 1980s, was effectively and successfully used in antenna structures’ optimization. This paper makes some improvement to it so that it possesses the characteristics of both the optimality criteria methods and the mathematical programming methods. When the Guide-Weight method is applied into topology optimization, it works very well with unified and simple form, wide availability and fast convergence. The algorithm of the Guide-Weight method and the improvement on it are described; two formulations of topology optimization solved by the Guide-Weight method combining with SIMP method are presented; subsequently, three numerical examples are provided, and comparison of the Guide-Weight method with other methods is made.

关键词: Guide-Weight method     topology optimization     SIMP method    

Multiresolution and multimaterial topology optimization of fail-safe structures under B-spline spaces

《机械工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11465-023-0768-9

摘要: This study proposes a B-spline-based multiresolution and multimaterial topology optimization (TO) design method for fail-safe structures (FSSs), aiming to achieve efficient and lightweight structural design while ensuring safety and facilitating the postprocessing of topological structures. The approach involves constructing a multimaterial interpolation model based on an ordered solid isotropic material with penalization (ordered-SIMP) that incorporates fail-safe considerations. To reduce the computational burden of finite element analysis, we adopt a much coarser analysis mesh and finer density mesh to discretize the design domain, in which the density field is described by the B-spline function. The B-spline can efficiently and accurately convert optimized FSSs into computer-aided design models. The 2D and 3D numerical examples demonstrate the significantly enhanced computational efficiency of the proposed method compared with the traditional SIMP approach, and the multimaterial TO provides a superior structural design scheme for FSSs. Furthermore, the postprocessing procedures are significantly streamlined.

关键词: multiresolution     multimaterial     topology optimization     fail-safe structure     B-spline    

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 141-152 doi: 10.1007/s11465-019-0531-4

摘要: Enabled by advancements in multi-material additive manufacturing, lightweight lattice structures consisting of networks of periodic unit cells have gained popularity due to their extraordinary performance and wide array of functions. This work proposes a density-based robust topology optimization method for meso- or macro-scale multi-material lattice structures under any combination of material and load uncertainties. The method utilizes a new generalized material interpolation scheme for an arbitrary number of materials, and employs univariate dimension reduction and Gauss-type quadrature to quantify and propagate uncertainty. By formulating the objective function as a weighted sum of the mean and standard deviation of compliance, the tradeoff between optimality and robustness can be studied and controlled. Examples of a cantilever beam lattice structure under various material and load uncertainty cases exhibit the efficiency and flexibility of the approach. The accuracy of univariate dimension reduction is validated by comparing the results to the Monte Carlo approach.

关键词: robust topology optimization     lattice structures     multi-material     material uncertainty     load uncertainty     univariate dimension reduction    

Connected morphable components-based multiscale topology optimization

Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 129-140 doi: 10.1007/s11465-019-0532-3

摘要: The advances of manufacturing techniques, such as additive manufacturing, have provided unprecedented opportunities for producing multiscale structures with intricate latticed/cellular material microstructures to meet the increasing demands for parts with customized functionalities. However, there are still difficulties for the state-of-the-art multiscale topology optimization (TO) methods to achieve manufacturable multiscale designs with cellular materials, partially due to the disconnectivity issue when tiling material microstructures. This paper attempts to address the disconnectivity issue by extending component-based TO methodology to multiscale structural design. An effective linkage scheme to guarantee smooth transitions between neighboring material microstructures (unit cells) is devised and investigated. Associated with the advantages of components-based TO, the number of design variables is greatly reduced in multiscale TO design. Homogenization is employed to calculate the effective material properties of the porous materials and to correlate the macro/structural scale with the micro/material scale. Sensitivities of the objective function with respect to the geometrical parameters of each component in each material microstructure have been derived using the adjoint method. Numerical examples demonstrate that multiscale structures with well-connected material microstructures or graded/layered material microstructures are realized.

关键词: multiscale topology optimization     morphable component     material microstructure     homogenization    

Controlling interstory drift ratio profiles via topology optimization strategies

《结构与土木工程前沿(英文)》 2023年 第17卷 第2期   页码 165-178 doi: 10.1007/s11709-022-0892-3

摘要: An approach to control the profiles of interstory drift ratios along the height of building structures via topology optimization is proposed herein. The theoretical foundation of the proposed approach involves solving a min–max optimization problem to suppress the maximum interstory drift ratio among all stories. Two formulations are suggested: one inherits the bound formulation and the other utilizes a p-norm function to aggregate all individual interstory drift ratios. The proposed methodology can shape the interstory drift ratio profiles into inverted triangular or quadratic patterns because it realizes profile control using a group of shape weight coefficients. The proposed formulations are validated via a series of numerical examples. The disparity between the two formulations is clear. The optimization results show the optimal structural features for controlling the interstory drift ratios under different requirements.

关键词: interstory drift ratio     aggregation function     bound formulation     min–max problem     topology optimization    

Efficient, high-resolution topology optimization method based on convolutional neural networks

Liang XUE, Jie LIU, Guilin WEN, Hongxin WANG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 80-96 doi: 10.1007/s11465-020-0614-2

摘要: Topology optimization is a pioneer design method that can provide various candidates with high mechanical properties. However, high resolution is desired for optimum structures, but it normally leads to a computationally intractable puzzle, especially for the solid isotropic material with penalization (SIMP) method. In this study, an efficient, high-resolution topology optimization method is developed based on the super-resolution convolutional neural network (SRCNN) technique in the framework of SIMP. SRCNN involves four processes, namely, refinement, path extraction and representation, nonlinear mapping, and image reconstruction. High computational efficiency is achieved with a pooling strategy that can balance the number of finite element analyses and the output mesh in the optimization process. A combined treatment method that uses 2D SRCNN is built as another speed-up strategy to reduce the high computational cost and memory requirements for 3D topology optimization problems. Typical examples show that the high-resolution topology optimization method using SRCNN demonstrates excellent applicability and high efficiency when used for 2D and 3D problems with arbitrary boundary conditions, any design domain shape, and varied load.

关键词: topology optimization     convolutional neural network     high resolution     density-based    

A MATLAB code for the material-field series-expansion topology optimization method

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 607-622 doi: 10.1007/s11465-021-0637-3

摘要: This paper presents a MATLAB implementation of the material-field series-expansion (MFSE) topo-logy optimization method. The MFSE method uses a bounded material field with specified spatial correlation to represent the structural topology. With the series-expansion method for bounded fields, this material field is described with the characteristic base functions and the corresponding coefficients. Compared with the conventional density-based method, the MFSE method decouples the topological description and the finite element discretization, and greatly reduces the number of design variables after dimensionality reduction. Other features of this method include inherent control on structural topological complexity, crisp structural boundary description, mesh independence, and being free from the checkerboard pattern. With the focus on the implementation of the MFSE method, the present MATLAB code uses the maximum stiffness optimization problems solved with a gradient-based optimizer as examples. The MATLAB code consists of three parts, namely, the main program and two subroutines (one for aggregating the optimization constraints and the other about the method of moving asymptotes optimizer). The implementation of the code and its extensions to topology optimization problems with multiple load cases and passive elements are discussed in detail. The code is intended for researchers who are interested in this method and want to get started with it quickly. It can also be used as a basis for handling complex engineering optimization problems by combining the MFSE topology optimization method with non-gradient optimization algorithms without sensitivity information because only a few design variables are required to describe relatively complex structural topology and smooth structural boundaries using the MFSE method.

关键词: MATLAB implementation     topology optimization     material-field series-expansion method     bounded material field     dimensionality reduction    

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 213-221 doi: 10.1007/s11465-019-0536-z

摘要: This paper presents a manufacturing cost constrained topology optimization algorithm considering the laser powder bed additive manufacturing process. Topology optimization for additive manufacturing was recently extensively studied, and many related topics have been addressed. However, metal additive manufacturing is an expensive process, and the high manufacturing cost severely hinders the widespread use of this technology. Therefore, the proposed algorithm in this research would provide an opportunity to balance the manufacturing cost while pursuing the superior structural performance through topology optimization. Technically, the additive manufacturing cost model for laser powder bed-based process is established in this paper and real data is collected to support this model. Then, this cost model is transformed into a level set function-based expression, which is integrated into the level set topology optimization problem as a constraint. Therefore, by properly developing the sensitivity result, the metallic additive manufacturing part can be optimized with strictly constrained manufacturing cost. Effectiveness of the proposed algorithm is proved by numerical design examples.

关键词: topology optimization     manufacturing cost     additive manufacturing     powder bed    

Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency

Manman XU, Shuting WANG, Xianda XIE

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 222-234 doi: 10.1007/s11465-019-0534-1

摘要: Maximizing the fundamental eigenfrequency is an efficient means for vibrating structures to avoid resonance and noises. In this study, we develop an isogeometric analysis (IGA)-based level set model for the formulation and solution of topology optimization in cases with maximum eigenfrequency. The proposed method is based on a combination of level set method and IGA technique, which uses the non-uniform rational B-spline (NURBS), description of geometry, to perform analysis. The same NURBS is used for geometry representation, but also for IGA-based dynamic analysis and parameterization of the level set surface, that is, the level set function. The method is applied to topology optimization problems of maximizing the fundamental eigenfrequency for a given amount of material. A modal track method, that monitors a single target eigenmode is employed to prevent the exchange of eigenmode order number in eigenfrequency optimization. The validity and efficiency of the proposed method are illustrated by benchmark examples.

关键词: topology optimization     level set method     isogeometric analysis     eigenfrequency    

Level set band method: A combination of density-based and level set methods for the topology optimization

Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 390-405 doi: 10.1007/s11465-020-0588-0

摘要: The level set method (LSM), which is transplanted from the computer graphics field, has been successfully introduced into the structural topology optimization field for about two decades, but it still has not been widely applied to practical engineering problems as density-based methods do. One of the reasons is that it acts as a boundary evolution algorithm, which is not as flexible as density-based methods at controlling topology changes. In this study, a level set band method is proposed to overcome this drawback in handling topology changes in the level set framework. This scheme is proposed to improve the continuity of objective and constraint functions by incorporating one parameter, namely, level set band, to seamlessly combine LSM and density-based method to utilize their advantages. The proposed method demonstrates a flexible topology change by applying a certain size of the level set band and can converge to a clear boundary representation methodology. The method is easy to implement for improving existing LSMs and does not require the introduction of penalization or filtering factors that are prone to numerical issues. Several 2D and 3D numerical examples of compliance minimization problems are studied to illustrate the effects of the proposed method.

关键词: level set method     topology optimization     density-based method     level set band    

A regularization scheme for explicit level-set XFEM topology optimization

Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE

《机械工程前沿(英文)》 2019年 第14卷 第2期   页码 153-170 doi: 10.1007/s11465-019-0533-2

摘要: Regularization of the level-set (LS) field is a critical part of LS-based topology optimization (TO) approaches. Traditionally this is achieved by advancing the LS field through the solution of a Hamilton-Jacobi equation combined with a reinitialization scheme. This approach, however, may limit the maximum step size and introduces discontinuities in the design process. Alternatively, energy functionals and intermediate LS value penalizations have been proposed. This paper introduces a novel LS regularization approach based on a signed distance field (SDF) which is applicable to explicit LS-based TO. The SDF is obtained using the heat method (HM) and is reconstructed for every design in the optimization process. The governing equations of the HM, as well as the ones describing the physical response of the system of interest, are discretized by the extended finite element method (XFEM). Numerical examples for problems modeled by linear elasticity, nonlinear hyperelasticity and the incompressible Navier-Stokes equations in two and three dimensions are presented to show the applicability of the proposed scheme to a broad range of design optimization problems.

关键词: level-set regularization     explicit level-sets     XFEM     CutFEM     topology optimization     heat method     signed distance field     nonlinear structural mechanics     fluid mechanics    

标题 作者 时间 类型 操作

Data-driven distribution network topology identification considering correlated generation power of distributed

期刊论文

An identification method for enclosed voids restriction in manufacturability design for additive manufacturing

Shutian LIU,Quhao LI,Wenjiong CHEN,Liyong TONG,Gengdong CHENG

期刊论文

Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability

期刊论文

Massively efficient filter for topology optimization based on the splitting of tensor product structure

期刊论文

Solving topology optimization problems by the Guide-Weight method

Xinjun LIU, Zhidong LI, Liping WANG, Jinsong WANG

期刊论文

Multiresolution and multimaterial topology optimization of fail-safe structures under B-spline spaces

期刊论文

Robust topology optimization of multi-material lattice structures under material and load uncertainties

Yu-Chin CHAN, Kohei SHINTANI, Wei CHEN

期刊论文

Connected morphable components-based multiscale topology optimization

Jiadong DENG, Claus B. W. PEDERSEN, Wei CHEN

期刊论文

Controlling interstory drift ratio profiles via topology optimization strategies

期刊论文

Efficient, high-resolution topology optimization method based on convolutional neural networks

Liang XUE, Jie LIU, Guilin WEN, Hongxin WANG

期刊论文

A MATLAB code for the material-field series-expansion topology optimization method

期刊论文

Manufacturing cost constrained topology optimization for additive manufacturing

Jikai LIU, Qian CHEN, Xuan LIANG, Albert C. TO

期刊论文

Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency

Manman XU, Shuting WANG, Xianda XIE

期刊论文

Level set band method: A combination of density-based and level set methods for the topology optimization

Peng WEI, Wenwen WANG, Yang YANG, Michael Yu WANG

期刊论文

A regularization scheme for explicit level-set XFEM topology optimization

Markus J. GEISS, Jorge L. BARRERA, Narasimha BODDETI, Kurt MAUTE

期刊论文